
This document is originally distributed by AVRfreaks.net, and may be distributed, reproduced, and modified
without restrictions. Updates and additional design notes can be found at: www.AVRfreaks.net

DESIGN NOTE
AUTHOR:
KEYWORDS: #038CRC, SRAM, ERROR DETECTION

ANTHONY BARRETT
Fast Look-up Table Driven 16-bit CRC Routine for
Atmel AVR Microcontrollers

There are a few application notes around for 16-bit CRC (Cyclic Redundancy Check)
calculating routines, but none are available in AVR assembler or are look-up table
driven. The routine provided here is not only optimised in assembler but also uses a pre-
calculated look-up table for absolute CRC calculation speed! This 16-bit CRC is the
same as used in XMODEM, YMODEM, and ZMODEM File Transfer Protocols.

“CRC-16 guarantees detection of all single and double bit errors, all errors with an
odd number of error bits, all burst errors of length 16 or less, 99.9969% of all 17-bit
error bursts, and 99.9984% of all possible longer error bursts. By contrast, a double
bit error, or a burst error of nine bits or more can sneak past the arithmetic
checksum”.

This routine was primarily written for error checking of serially transmitted data. The
application uses this routine to calculate a CRC on the data before and after it is trans-
mitted over an error prone medium e.g., a lengthy RS-232 serial connection. The pre-
calculated CRC is sent along with the data and is then compared to another calculated
CRC of the received data. If the two do not agree then an error in the data transmission
has been detected. The data can then be retransmitted or ignored depending on the
application’s needs and protocol. The code could also be modified to calculate and
check Program FLASH ROM.

To use this routine, simply load Index Register Y (r28 & r29) to point to the data in
SRAM. Then load r18 with the number of bytes of data and call the subroutine
“Calc16CRC”. The 16-bit result is returned in r16 (low Byte) and r17 (High byte). Here is
an example:

DoIt: ldi YL,low(Data)

ldi YH,high(Data)

ldi r18,100

rcall Calc16CRC

sts CRCLow,r16

sts CRCHi,r17

...

Obviously the number of bytes is limited to 255 (eight bits), but again the routine can be
modified to support a 16 bit count if needed.
1www.AVRfreaks.net Design Note #038 – Date: xx/xx

The code has been provided to “www.AVRFreaks.com” in Zip-format (FastCRC16.zip)
for you to download. I do not recommend typing in the look-up table manually as any
typo errors will compromise the results.

Interestingly, I used this routine in my home alarm system to provide secure serial com-
munications between the Main Controller (Mega163) and the Control Panels (8515). I
decided for simplicity to use serial TTL levels and a good quality shielded cable for the
hardware level. Sure, TTL levels are not meant for long cable runs . So to make the
system reliable I provided a robust protocol level using the 16-bit CRC. After all, pro-
gram code costs me nothing but extra hardware does (RS-232 driver/receiver chips).
Anyway to get to the point, I was surprised to find that the TTL level serial communica-
tions over a shielded cable (approx. 16 meters in length) has produce no detectable
errors for over a year now. So I guess that’s a complement for AVR’s I/O Port and UART
Hardware.

Reference XMODEM/YMODEM PROTOCOL REFERENCE by Chuck Forsberg, 18-June-1988

Code
; **********************************

; * *

; * Fast lookup table driven *

; * 16 bit CRC Routine for *

; * ATMEL AVR microcontrollers *

; * *

; * 17-Oct-2002 *

; * *

; * By Anthony Barrett *

; * *

; **********************************

;

; Y (r28, R29) points to data in SRAM, r18 = data size in bytes.

; CRC result is returned in r16 (low byte) & r17 (high byte).

; Uses regisisters: r0, r1, r2, r16, r17, r18, r19, r28, r29, r30, r31

Calc16CRC:clr r16

clr r17

clr r1

CRCLoop: ld r2,Y+

mov r19,r17

eor r19,r2

ldi ZL,low(2 * CRC16Tab)

ldi ZH,high(2 * CRC16Tab)

add ZL,r19

adc ZH,r1

add ZL,r19

adc ZH,r1

lpm

mov r17,r16
www.AVRfreaks.net2 Design Note #038 – Date: xx/xx

mov r16,r0

adiw ZL,1

lpm

eor r17,r0

dec r18

brne CRCLoop

ret

; High speed 16 bit CRC lookup table:

; Polynomial: X^12 + X^5 + 1

CRC16Tab: .dw $0000,$1021,$2042,$3063,$4084,$50a5,$60c6,$70e7

.dw $8108,$9129,$a14a,$b16b,$c18c,$d1ad,$e1ce,$f1ef

.dw $1231,$0210,$3273,$2252,$52b5,$4294,$72f7,$62d6

.dw $9339,$8318,$b37b,$a35a,$d3bd,$c39c,$f3ff,$e3de

.dw $2462,$3443,$0420,$1401,$64e6,$74c7,$44a4,$5485

.dw $a56a,$b54b,$8528,$9509,$e5ee,$f5cf,$c5ac,$d58d

.dw $3653,$2672,$1611,$0630,$76d7,$66f6,$5695,$46b4

.dw $b75b,$a77a,$9719,$8738,$f7df,$e7fe,$d79d,$c7bc

.dw $48c4,$58e5,$6886,$78a7,$0840,$1861,$2802,$3823

.dw $c9cc,$d9ed,$e98e,$f9af,$8948,$9969,$a90a,$b92b

.dw $5af5,$4ad4,$7ab7,$6a96,$1a71,$0a50,$3a33,$2a12

.dw $dbfd,$cbdc,$fbbf,$eb9e,$9b79,$8b58,$bb3b,$ab1a

.dw $6ca6,$7c87,$4ce4,$5cc5,$2c22,$3c03,$0c60,$1c41

.dw $edae,$fd8f,$cdec,$ddcd,$ad2a,$bd0b,$8d68,$9d49

.dw $7e97,$6eb6,$5ed5,$4ef4,$3e13,$2e32,$1e51,$0e70

.dw $ff9f,$efbe,$dfdd,$cffc,$bf1b,$af3a,$9f59,$8f78

.dw $9188,$81a9,$b1ca,$a1eb,$d10c,$c12d,$f14e,$e16f

.dw $1080,$00a1,$30c2,$20e3,$5004,$4025,$7046,$6067

.dw $83b9,$9398,$a3fb,$b3da,$c33d,$d31c,$e37f,$f35e

.dw $02b1,$1290,$22f3,$32d2,$4235,$5214,$6277,$7256

.dw $b5ea,$a5cb,$95a8,$8589,$f56e,$e54f,$d52c,$c50d

.dw $34e2,$24c3,$14a0,$0481,$7466,$6447,$5424,$4405

.dw $a7db,$b7fa,$8799,$97b8,$e75f,$f77e,$c71d,$d73c

.dw $26d3,$36f2,$0691,$16b0,$6657,$7676,$4615,$5634

.dw $d94c,$c96d,$f90e,$e92f,$99c8,$89e9,$b98a,$a9ab

.dw $5844,$4865,$7806,$6827,$18c0,$08e1,$3882,$28a3

.dw $cb7d,$db5c,$eb3f,$fb1e,$8bf9,$9bd8,$abbb,$bb9a

.dw $4a75,$5a54,$6a37,$7a16,$0af1,$1ad0,$2ab3,$3a92

.dw $fd2e,$ed0f,$dd6c,$cd4d,$bdaa,$ad8b,$9de8,$8dc9

.dw $7c26,$6c07,$5c64,$4c45,$3ca2,$2c83,$1ce0,$0cc1

.dw $ef1f,$ff3e,$cf5d,$df7c,$af9b,$bfba,$8fd9,$9ff8

.dw $6e17,$7e36,$4e55,$5e74,$2e93,$3eb2,$0ed1,$1ef0
www.AVRfreaks.net 3Design Note #038 – Date: xx/xx

	Reference
	Code

