Get data of UART & Save it - Read & Send the data f

Go To Last Post
4 posts / 0 new
Author
Message
#1
  • 1
  • 2
  • 3
  • 4
  • 5
Total votes: 0

Hi everbody
i have a project that want to use of UART to get data and save it in SD Card and or Read data from the SD and Send via UART.
i attached a picture of my project. the red part is my project. well,
my MCU has two mode. the first MCU(out of red part) by the green line determine mode.
if the green line is 0,
my MCU should get data from UART and save it in SD Card.
if the green line is 1,
my MCU should read data from SD and send via UART.
well, now i wrote a program, but i have some question:
1- how can i send and recieve the array(i think it's better i put the data to an array and send and get to other MCU(at laest 100 array)) with it's name?

2- which function is easier for Save and Read the data from SD(FAT codevision Lib)?

and finally, any suggustion for easier doing this project?

now my code is this(i take some part of the codes from other code for SD):

#include 
#include 
#include 

#define T1_OVF_FREQ 100
#define T1_PRESC 1024L
#define T1_INIT (0x10000L-(_MCU_CLOCK_FREQUENCY_/(T1_PRESC*T1_OVF_FREQ)))

interrupt [TIM1_OVF] void timer_comp_isr(void)
{
/* re-initialize Timer1 */
TCNT1H=T1_INIT>>8;
TCNT1L=T1_INIT&0xFF;
/* card access low level timing function */
disk_timerproc();
}


#ifndef RXB8
#define RXB8 1
#endif

#ifndef TXB8
#define TXB8 0
#endif

#ifndef UPE
#define UPE 2
#endif

#ifndef DOR
#define DOR 3
#endif

#ifndef FE
#define FE 4
#endif

#ifndef UDRE
#define UDRE 5
#endif

#ifndef RXC
#define RXC 7
#endif

#define FRAMING_ERROR (1<<FE)
#define PARITY_ERROR (1<<UPE)
#define DATA_OVERRUN (1<<DOR)
#define DATA_REGISTER_EMPTY (1<<UDRE)
#define RX_COMPLETE (1<<RXC)

// USART Receiver buffer
#define RX_BUFFER_SIZE 8
char rx_buffer[RX_BUFFER_SIZE];

#if RX_BUFFER_SIZE <= 256
unsigned char rx_wr_index,rx_rd_index,rx_counter;
#else
unsigned int rx_wr_index,rx_rd_index,rx_counter;
#endif

// This flag is set on USART Receiver buffer overflow
bit rx_buffer_overflow;

// USART Receiver interrupt service routine
interrupt [USART_RXC] void usart_rx_isr(void)
{
char status,data;
status=UCSRA;
data=UDR;
if ((status & (FRAMING_ERROR | PARITY_ERROR | DATA_OVERRUN))==0)
   {
   rx_buffer[rx_wr_index++]=data;
#if RX_BUFFER_SIZE == 256
   // special case for receiver buffer size=256
   if (++rx_counter == 0) rx_buffer_overflow=1;
#else
   if (rx_wr_index == RX_BUFFER_SIZE) rx_wr_index=0;
   if (++rx_counter == RX_BUFFER_SIZE)
      {
      rx_counter=0;
      rx_buffer_overflow=1;
      }
#endif
   }
}

#ifndef _DEBUG_TERMINAL_IO_
// Get a character from the USART Receiver buffer
#define _ALTERNATE_GETCHAR_
#pragma used+
char getchar(void)
{
char data;
while (rx_counter==0);
data=rx_buffer[rx_rd_index++];
#if RX_BUFFER_SIZE != 256
if (rx_rd_index == RX_BUFFER_SIZE) rx_rd_index=0;
#endif
#asm("cli")
--rx_counter;
#asm("sei")
return data;
}
#pragma used-
#endif

// USART Transmitter buffer
#define TX_BUFFER_SIZE 8
char tx_buffer[TX_BUFFER_SIZE];

#if TX_BUFFER_SIZE <= 256
unsigned char tx_wr_index,tx_rd_index,tx_counter;
#else
unsigned int tx_wr_index,tx_rd_index,tx_counter;
#endif

// USART Transmitter interrupt service routine
interrupt [USART_TXC] void usart_tx_isr(void)
{
if (tx_counter)
   {
   --tx_counter;
   UDR=tx_buffer[tx_rd_index++];
#if TX_BUFFER_SIZE != 256
   if (tx_rd_index == TX_BUFFER_SIZE) tx_rd_index=0;
#endif
   }
}

#ifndef _DEBUG_TERMINAL_IO_
// Write a character to the USART Transmitter buffer
#define _ALTERNATE_PUTCHAR_
#pragma used+
void putchar(char c)
{
while (tx_counter == TX_BUFFER_SIZE);
#asm("cli")
if (tx_counter || ((UCSRA & DATA_REGISTER_EMPTY)==0))
   {
   tx_buffer[tx_wr_index++]=c;
#if TX_BUFFER_SIZE != 256
   if (tx_wr_index == TX_BUFFER_SIZE) tx_wr_index=0;
#endif
   ++tx_counter;
   }
else
   UDR=c;
#asm("sei")
}
#pragma used-
#endif

// Standard Input/Output functions
#include 

unsigned char buffer[10];

FRESULT res;
unsigned int nbytes;
FATFS drive;
FIL file;
char path1[]="0:/hamid.txt";

// Declare your global variables here

void main(void)
{
// Declare your local variables here

// Input/Output Ports initialization
// Port A initialization
// Func7=In Func6=In Func5=In Func4=In Func3=In Func2=In Func1=In Func0=In 
// State7=T State6=T State5=T State4=T State3=T State2=T State1=T State0=T 
PORTA=0x00;
DDRA=0x00;

// Port B initialization
// Func7=In Func6=In Func5=In Func4=In Func3=In Func2=In Func1=In Func0=In 
// State7=T State6=T State5=T State4=T State3=T State2=T State1=T State0=T 
PORTB=0x00;
DDRB=0x00;

// Port C initialization
// Func7=In Func6=In Func5=In Func4=In Func3=In Func2=In Func1=In Func0=In 
// State7=T State6=T State5=T State4=T State3=T State2=T State1=T State0=T 
PORTC=0x00;
DDRC=0x00;

// Port D initialization
// Func7=In Func6=In Func5=In Func4=In Func3=In Func2=In Func1=In Func0=In 
// State7=T State6=T State5=T State4=T State3=T State2=T State1=T State0=T 
PORTD=0x00;
DDRD=0x00;

// Timer/Counter 0 initialization
// Clock source: System Clock
// Clock value: Timer 0 Stopped
// Mode: Normal top=0xFF
// OC0 output: Disconnected
TCCR0=0x00;
TCNT0=0x00;
OCR0=0x00;


TCCR1A=0x00;
TCCR1B=(1<<CS12)|(1<<CS10);
TCNT1H=T1_INIT>>8;
TCNT1L=T1_INIT&0xFF;
ICR1H=0x00;
ICR1L=0x00;
OCR1AH=0x00;
OCR1AL=0x00;
OCR1BH=0x00;
OCR1BL=0x00;

// Timer/Counter 2 initialization
// Clock source: System Clock
// Clock value: Timer2 Stopped
// Mode: Normal top=0xFF
// OC2 output: Disconnected
ASSR=0x00;
TCCR2=0x00;
TCNT2=0x00;
OCR2=0x00;

// External Interrupt(s) initialization
// INT0: Off
// INT1: Off
// INT2: Off
MCUCR=0x00;
MCUCSR=0x00;

// Timer(s)/Counter(s) Interrupt(s) initialization
TIMSK=1<<TOIE1;

// USART initialization
// Communication Parameters: 8 Data, 1 Stop, No Parity
// USART Receiver: On
// USART Transmitter: On
// USART Mode: Asynchronous
// USART Baud Rate: 9600
UCSRA=0x00;
UCSRB=0xD8;
UCSRC=0x86;
UBRRH=0x01;
UBRRL=0x03;

// Analog Comparator initialization
// Analog Comparator: Off
// Analog Comparator Input Capture by Timer/Counter 1: Off
ACSR=0x80;
SFIOR=0x00;

// ADC initialization
// ADC disabled
ADCSRA=0x00;

// SPI initialization
// SPI disabled
SPCR=0x00;

// TWI initialization
// TWI disabled
TWCR=0x00;

delay_ms(1000);
// Global enable interrupts
#asm("sei")

while (1)
      {
      // Place your code here

      }
}

Attachment(s): 

"One's value is inherent; money is not inherent"

 

Chuck, you are in my heart!

Last Edited: Thu. Aug 8, 2013 - 05:18 PM
  • 1
  • 2
  • 3
  • 4
  • 5
Total votes: 0

Do you need two MCUs?
Is it simpler reading a state (if necessary, debounce it) and decide one should store or send?
Or synchronising with another MCU, read a state, and decide one should store or send ?

  • 1
  • 2
  • 3
  • 4
  • 5
Total votes: 0

Sounds like you need a file transfer protocol. Something like xmodem comes to mind. Xmodem sends the data in 128 byte packets then waits for an acknowledge from the receiver. It then sends the next packet until all is sent.

  • 1
  • 2
  • 3
  • 4
  • 5
Total votes: 0

Thanks dbrion0606,

Quote:
Do you need two MCUs?

Indeed my employer said tom me that do this. he said me that just do this project.
Quote:
Is it simpler reading a state (if necessary, debounce it) and decide one should store or send?
Or synchronising with another MCU, read a state, and decide one should store or send ?

have you good idea?
the first MCU will get some amounts from ADC and put in an array and send to my mcu. well i should save it in SD. next he want to get the amouts from SD(by my mcu) untill compare to other amounts.

@Kartman
Thanks for reply,
Probably! i think your idea is suitable.

"One's value is inherent; money is not inherent"

 

Chuck, you are in my heart!